
Supplementary Materials:
Learning the Best Pooling Strategy for Visual Semantic Embedding

Jiacheng Chen1∗ Hexiang Hu2∗ Hao Wu1 Yuning Jiang3 Changhu Wang1

1ByteDance AI Lab 2University of Southern California 3Alibaba Inc

In this Supplementary Material , we provide implementation
details and experiments omitted in the main text. The content
is organized as follows:

1. Additional implementation details, including model set-
tings, details of reproducing baseline methods, training
setups for different experiments.

2. More experiments and results, including

• Ablation studies for better understanding GPO, includ-
ing the effects of GPO on each modality alone, the
importance of the Size Augmentation, and the choice
of the sequence model for GPO implementation.

• Extensions of Table 2 of the main text, with full COCO
5K evaluation results, more combinations of feature
backbones, and more related baselines.

• A synthetic experiment for further verifying the de-
sign choices of GPO, as well as motivating the Size
Augmentation.
• Experiments for exploring more complex variants of

GPO (i.e., data-dependent pooling and per-dimensional
pooling), which provide potential explanations for the
failure of complex feature aggregators.

1. Additional Implementation Details
1.1. Image-text Matching

Model settings The dimensionality d3 of the joint embed-
ding space is 1024 for all experiments. Note when d1 6= d3
or d2 6= d3, MLPs are applied before GPO to transform the
dimensionality of features. The CNN backbones used in
our experiments are either ResNet [8] or ResNeXt101 [20],
thus d1 is 2048. For text backbones, we set d2 = 1024 for
BiGRU, and pre-trained BERT has default d2 being 768.
We convert the officially released BUTD CNN from Caffe
to Pytorch for running experiments related to Grid feature.
When using Grid feature, the dimensionality transforma-
tion only uses a single linear layer since the image branch
already has a massive CNN. When using Region feature, the
transformation uses a two-layer MLP with residual link.

∗Authors contributed equally

Training details The VSE models for image-text matching
are trained with AdamW optimizer with weight decay factor
10e-4. The batch size is always 128 and the margin α of the
triplet ranking loss is 0.2. The initial learning rate is 5e-4
while different model components have different learning
rate multiplier: (1) CNNs pre-trained on ImageNet: 0.1; (2)
BUTD or WSL CNNs: 0.01; (3) BERT: 0.1. The models are
trained for 25 epochs and the learning rate decays by a factor
of 10 for the last 10 epochs. When fine-tuning CNN back-
bones (i.e., for Grid feature), we fix the running statistics of
the Batch Normalization layers during the training.

Two warm-up strategies are used during training: (1) At
the first epoch, the parameter of the ConvNet is not trained
(only for Grid feature), and the triplet ranking loss uses
all negative examples in the batch instead of using only
the hardest negative example; (2) Starting from the second
epoch, all parameters are trained end-to-end with Eq. 1 of
the main text, and linear learning rate warmup is used.

All experiments are implemented with PyTorch v1.2.0
and run on Tesla V100 PCI-E GPU.
Fixes of CVSE [18] for fair comparison We notice that
the official implementation of CVSE [18] shows two unfair
experimental setups compared to other image-text matching
methods in the literature:

1. The “concept labels”(i.e., words with semantic meaning)
are provided as extra input for the model, which is one
of the core contributions of CVSE. However, for each
text input, its “concept labels” actually come from all
five ground-truth captions (in COCO and Flickr30k, each
image is associated with five captions). This is an unfair
information leak compared to other methods, as it makes
the model leverage information from five captions to
match one image. The valid “concept labels” of each
caption should only contain labels from itself.

2. Previous image-text matching methods report COCO 1K
results by averaging over five 1K data folds of the test set,
but CVSE is only evaluated on the first 1K fold.

We use the official released code1 to re-train and re-evaluate
1https://github.com/BruceW91/CVSE

https://github.com/BruceW91/CVSE


Table 1. Variants of VSE∞ on BUTD region feature and BERT,
with different aggregator combintations.

Data Split COCO 5-fold 1K Test [4]
Eval Task IMG→ TEXT TEXT→ IMG

Visual Aggr. Text Aggr. R@1 R@5 R@1 R@5

AvgPool CLS 67.7 92.6 54.8 85.1
AvgPool GPO 71.7 93.8 57.5 87.6

GPO CLS 73.8 94.8 59.2 88.0
GPO GPO 79.7 96.4 64.8 91.4

the model while fixing the above two setups, and report the
results in the main paper.

1.2. Video-text Matching

Model settings & Training details We follow the official
implementation of HGR [3]2 in the video-text matching
experiments and plug in our GPO as the video and text
feature aggregator. The same as the image-text matching
experiments, the dimension of the joint embedding space
is 1024 and the margin α of triplet ranking loss is 0.2. All
video-text models are trained for 35 epochs with batch size
128. The initial learning rate is 1e-4, and the learning rate
decays by a factor of 10 for the last 10 epochs.

We found that re-running the video-text VSE++ baseline
in the official HGR code produces obviously higher results
compared to those reported in the original paper, thus we
used our re-running results to compare VSE++ and VSE∞.

1.3. Setups of Figure 3

To measure the speed of text-based image retrieval with
VSE and V+L BERT in Figure 3, we first pre-compute all
features/embeddings that are not conditioned on the text
query (i.e., holistic embeddings for VSE, and BUTD region
features for V+L BERT). Then we compute the similarity
scores between the text query and all image candidates. For
VSE models, all similarity scores are calculated with a large
matrix multiplication, while for V+L BERT, we need to
forward the BERT model for n times where n is the number
of image candidates. We tune the batch size so that the GPO
memory is fully utilized.

2. Additional Experiments and Results
2.1. More Ablation Studies

(1) Do we need GPO for both visual and text features? In
Table 1, we use GPO to replace the standard pooling function
for BUTD image region feature and BERT text feature (i.e.,
AvgPool and CLS). The comparisons confirm that GPO
is effective for either modality alone, using GPO for both
modalities can further improve the results by a large margin.

2https://github.com/cshizhe/hgr_v2t

Table 2. The Size Augmentation’s effect on different modalities.

Data Split COCO 5-fold 1K Test [4]
Eval Task IMG→ TEXT TEXT→ IMG

Features Size Aug. R@1 R@5 R@1 R@5

BUTD (Region)
+ BiGRU

∅ 74.6 95.0 60.6 89.1
visual 75.4 95.5 61.4 89.5
visual+text 78.5 96.0 61.7 90.3

Table 3. Different choices of the sequence model used by GPO

Data Split COCO 5-fold 1K Test [4]
Eval Task IMG→ TEXT TEXT→ IMG

Features Seq. Model R@1 R@5 R@1 R@5

BUTD (Region)
+ BiGRU

Transformer 77.4 95.4 61.4 90.1
BiGRU 78.5 96.0 61.7 90.3

BUTD (Grid)
+ BiGRU

Transformer 76.6 95.7 62.7 90.7
BiGRU 78.0 95.8 62.6 90.6

(2) Effectiveness of Size Augmentation Table 2 shows the
effectiveness of Size Augmentation. The random dropping of
either visual and text inputs boost the multi-modal retrieval
performance. A synthetic experiment in Supplementary Ma-
terial provides more motivations for this augmentation strat-
egy. Surprisingly, we find this strategy also improves the
baseline VSE++ [6], potentially as a regularization method.
State-of-the-art video-text matching model [3] uses a similar
strategy, feature dropout, which adds a dropout layer for
input features. The difference is that it randomly set feature
values to 0, while Size Augmentation randomly drops entire
elements from the feature set.
(3) Different choices of the sequence model in GPO We
also try using different sequence model to implement GPO.
Table 3 shows that using a Transformer Encoder [17] to re-
place the simple BiGRU does not yield improvements on
two different combinations of features. The sequence model
of GPO only takes the positional information as the input
without using the exact feature vectors, thus we believe it’s
not necessary for the sequence model to have large capacity.
A simple BiGRU will suffice for both capacity and compu-
tational efficiency, and more complex mechanisms like the
multi-head attentions of Transformers could even hurt the
performance.

2.2. More results and comparisons for image-text
matching

In Table 4 and Table 5, we provide results extending Ta-
ble 2 of the main text. Grid feature with ImageNet-pretrained
ResNet-152 was the standard image backbone for image-text
matching before BUTD region features became popular. It is
worth noting that our re-implementation of VSE++ improves
the original VSE++ by a large margin, by increasing the
image size from 224 × 224 to 512 × 512 as guided by the

https://github.com/cshizhe/hgr_v2t


Table 4. Extension of Table 2 of the main text, with more image-text matching results on COCO and Flickr30K, using different visual and
textual backbones (denoted by bold section title). ?: Ensemble results of two models; on IN/IN+VG: Models pre-trained on ImageNet [16],
ImageNet and VisualGenome [12], respectively. The best and second best results (in RSUM) are marked bold in red and black.

Data Split COCO 5-fold 1K Test [4] Flickr30K 1K Test [21]

Eval Task IMG→ TEXT TEXT→ IMG IMG→ TEXT TEXT→ IMG

Method Feature Type R@1 R@5 R@10 R@1 R@5 R@10 RSUM R@1 R@5 R@10 R@1 R@5 R@10 RSUM

ResNet-152 on IN [8] + BiGRU
UVS[11]2014 Grid 56.0 85.8 93.5 43.7 79.4 89.7 448.1 42.1 73.2 84.0 31.8 62.6 74.1 367.8
VSE++[6]2017 Grid 64.6 90.0 95.7 52.0 84.3 92.0 478.6 52.9 80.5 87.2 39.6 70.1 79.5 409.8
SCO[9]2018 Grid 69.9 92.9 97.5 56.7 87.5 94.8 499.3 55.5 82.0 89.3 41.1 70.5 80.1 418.5
GXN?[7]2018 Grid 68.5 - 97.9 56.6 - 94.5 - 56.8 - 89.6 41.5 - 80.1 -
Our: VSE++ Grid 70.9 93.4 97.5 58.2 87.1 93.5 500.6 64.4 87.3 93.1 49.3 77.5 84.7 456.3
Our: VSE∞ Grid 76.5 95.3 98.5 62.9 90.6 95.8 519.6 77.1 94.5 97.1 58.5 84.1 89.6 500.9

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BiGRU
SCAN?[13]2018 Region 72.7 94.8 98.4 58.8 88.4 94.8 507.9 67.4 90.3 95.8 48.6 77.7 85.2 465.0
LIWE [19]2019 Region 73.2 95.5 98.2 57.9 88.3 94.5 507.6 69.6 90.3 95.6 51.2 80.4 87.2 474.3
VSRN?[14]2019 Region 76.2 94.8 98.2 62.8 89.7 95.1 516.8 71.3 90.6 96.0 54.7 81.8 88.2 482.6
CVSE [18]2020 Region 69.2 93.3 97.5 55.7 86.9 93.8 496.4 70.5 88.0 92.7 54.7 82.2 88.6 476.7
CAAN [22]2020 Region 75.5 95.4 98.5 61.3 89.7 95.2 515.6 70.1 91.6 97.2 52.8 79.0 87.9 478.6
IMRAM? [2]2020 Region 76.7 95.6 98.5 61.7 89.1 95.0 516.6 74.1 93.0 96.6 53.9 79.4 87.2 484.2
Our: VSE++ Region 68.5 92.6 97.1 54.0 85.6 92.7 490.5 62.2 86.6 92.3 45.7 73.6 81.9 442.3
Our: VSE∞ Region 78.5 96.0 98.7 61.7 90.3 95.6 520.8 76.5 94.2 97.7 56.4 83.4 89.9 498.1
Our: VSE∞ Grid 78.0 95.8 98.5 62.6 90.6 96.0 521.5 77.9 93.7 97.4 57.5 83.4 90.2 500.2
Our: VSE∞ Region+Grid 80.0 97.0 99.0 64.8 91.6 96.5 528.8 80.7 96.4 98.3 60.8 86.3 92.3 514.8

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BERT [5]
Our: VSE++ Region 67.9 91.9 97.0 54.0 85.6 92.5 488.9 63.4 87.2 92.7 45.6 76.4 84.4 449.7
Our: VSE∞ Region 79.7 96.4 98.9 64.8 91.4 96.3 527.5 81.7 95.4 97.6 61.4 85.9 91.5 513.5
Our: VSE∞ Grid 80.4 96.8 99.1 66.4 92.1 96.7 531.6 81.5 97.1 98.5 63.7 88.3 93.2 522.3
Our: VSE∞ Region+Grid 82.2 97.5 99.5 68.1 92.9 97.2 537.4 85.3 97.2 98.9 66.7 89.9 94.0 532.0

ResNeXT-101 on IG (WSL) [15] + BERT [5]
Our: VSE++ Grid 79.6 97.1 99.0 66.4 91.1 95.5 528.7 80.9 96.6 98.9 65.2 89.5 93.7 524.8
Our: VSE∞ Grid 84.5 98.1 99.4 72.0 93.9 97.5 545.4 88.4 98.3 99.5 74.2 93.7 96.8 550.9
Our: VSE∞ ? Grid 85.6 98.0 99.4 73.1 94.3 97.7 548.1 88.7 98.9 99.8 76.1 94.5 97.1 555.1

empirical study of [10]. VSE∞ consistently outperforms the
improved VSE++ and other baselines on ResNet-152 grid
features.

We also include results of three non-VSE methods:
SCAN [13], CAAN [22], and IMRAM [2]. These meth-
ods rely on fine-grained cross-modality interactions to match
image and text, and all of them use BUTD and BiGRU as
the feature extractors. Under the same experimental setups,
VSE∞ outperforms them without any complex cross-modal
modeling.

2.3. Synthetic Experiment for Verifying GPO De-
sign

We further verify the architecture of coefficient gener-
ator g(·, ·) using synthetic data and pre-determined pool-
ing coefficients (e.g., coefficients for the K-MaxPool with
K = 5). As a concrete example, we generate a set of ran-
dom feature vectors as the input to GPO, and then use the

pre-determined "ground-truth" pooling strategy to generate
the "ground-truth" output. Such synthetic input-output pairs
are then used for learning a GPO module. As for evaluation,
we took the coefficient generator from GPO and compare
the predicted pooling coefficients to the "ground-truth" ones.
We report the results in Root Mean Square Error (RMSE).

Evaluation Protocol We designed four types of synthetic
pooling patterns: (1). AvgPool (denoted as A), (2). K-
MaxPool (denoted as M-K), (3). Top-K% Pooling (denoted
as T-K%), and (4). Linearly-decayed pooling weights (de-
noted as L), in which the pooling weight for the k-th max-
imum linearly decreases to zero as k goes from 1 to N. To
better assess generalization, we set the training feature set
sizes to range from 20 to 100, and we evaluate models on
test data with the feature set size ranging from 10 to 120. We
report results on both SEEN and UNSEEN feature set sizes to
investigate GPO’s generalization performance.



Table 5. Extension of Table 2 of the main text, with image-text matching results on COCO 5K. ?: Ensemble results of two models.

Data Split COCO 5K Test [4]
Eval Task IMG→ TEXT TEXT→ IMG

Method Feature Type R@1 R@5 R@10 R@1 R@5 R@10 RSUM

ResNet-152 on IN [8] + BiGRU
VSE++[6]2017 Grid 41.3 71.1 81.2 30.3 59.4 72.4 355.7
SCO[9]2018 Grid 42.8 72.3 83.0 33.1 62.9 75.5 369.6
GXN?[7]2018 Grid 42.0 - 84.7 31.7 - 74.6 -
Our: VSE++ Grid 46.1 76.8 86.6 35.2 65.6 77.3 387.6
Our: VSE∞ Grid 55.1 81.9 89.9 40.9 70.6 81.5 419.9

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BiGRU
SCAN?[13]2018 Region 50.4 82.2 90.0 38.6 69.3 80.4 410.9
VSRN?[14]2019 Region 53.0 81.1 89.4 40.5 70.6 81.1 415.7
CAAN [22]2020 Region 52.5 83.3 90.9 41.2 70.3 82.9 421.1
IMRAM? [2]2020 Region 53.7 83.2 91.0 39.7 69.1 79.8 416.5
Our: VSE++ Region 42.9 74.5 85.1 31.7 61.8 74.2 370.2
Our: VSE∞ Region 56.6 83.6 91.4 39.3 69.9 81.1 421.9
Our: VSE∞ Grid 56.2 83.7 90.9 40.8 70.6 81.5 423.7
Our: VSE∞ Region+Grid 59.8 86.1 92.8 42.7 72.8 83.3 437.5

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BERT [5]
Our: VSE++ Region 42.1 72.6 83.9 31.0 61.3 73.7 364.7
Our: VSE∞ Region 58.3 85.3 92.3 42.4 72.7 83.2 434.3
Our: VSE∞ Grid 59.1 85.9 92.8 44.1 74.1 84.0 440.0
Our: VSE∞ Region+Grid 62.5 87.8 94.0 46.0 75.8 85.7 451.8

ResNeXT-101 on IG (WSL) [15] + BERT [5]
Our: VSE++ Grid 57.9 85.2 92.8 44.9 74.5 84.0 439.2
Our: VSE∞ Grid 66.4 89.3 94.6 51.6 79.3 87.6 468.9
Our: VSE∞ ? Grid 68.1 90.2 95.2 52.7 80.2 88.3 474.8

Different GPO Designs We compare different design
choices of the architecture for g(·, ·), including:

• Cos/Sin+BiGRU This is the design introduced in the
main paper, which uses the positional encoding and learn
a BiGRU as the coefficients generator.

• Interp. Learn a fixed size vector as the pooling coef-
ficients, and use linear interpolation to get the pooling
coefficients for various lengths N. FSPool [23] uses this
type of design to handle variable-length inputs.

• Cos/Sin+MLP Instead of using a sequence model to han-
dle variable-size features, simply using a MLP to map
positional encodings into pooling coefficients. This de-
sign assumes the weight generation process for each index
k is unaware of the global length.

• Index+BiGRU This model transforms the position index
into embeddings with a learnable matrix, and learns a Bi-
GRU as the coefficients generator. Without the positional
encoding, this design applies no prior knowledge to the
ordinal position indices.

Results Table 6 presents the results comparing different de-
sign of GPOs. Cos/Sin+BiGRU achieves the best overall
performances. Interp. has clear difficulty in handling K-

Max Pooling. Index+BiGRU produces slightly worse results,
which shows the advantage of using Cos/Sin positional en-
coding. Moreover, generalizing to unseen feature sizes is
indeed challenging for GPO, and generalizing to smaller fea-
ture sizes is harder than generalizing to larger feature sizes.
To make GPO better generalize to inputs with different sizes,
we propose the Size Augmentation as discussed in § 3 of the
main paper.

2.4. Complex Variants of GPO

We have kept a simple architecture for GPO so that it
only adds marginal extra computational cost to VSE models.
However, it is worthwhile to verify whether more complex
variants of GPO can indeed produce better results. We inves-
tigate two modifications:

Are per-dimension pooling coefficients helpful? Instead
of generating shared pooling coefficients for all dimensions,
we try to generate coefficients for each dimension separately.
Per-dimensional pooling has stronger capacity and might
improve the performance, like how FSPool [23] is designed.
However, results in Table 7 disproves the above statement in
the context of VSE∞. The per-dimension variant of GPO



Table 6. Comparisons of different GPO designs on synthetic patterns. Results are reported in RMSE (lower the better).

Input Repr. Decoder
SEEN SIZES

A M-1 M-10 T-50% L

Index Interp. 0 .065 .030 .011 .004
Cos/Sin MLP .012 .003 .047 .032 .022
Index BiGRU .002 .002 .026 .011 .008
Cos/Sin BiGRU 0 .005 .010 .006 0

UNSEEN SIZES (smaller / larger)
A M-1 M-10 T-50% L

0/0 .017/.070 .141/.014 .039/.005 .016/.002
.054/.006 .003/.003 .093/.030 .096/.026 .065/.028
.006/.003 .004/.001 .052/.018 .049/.007 .015/.005

.002/0 .010/.004 .031/.007 .046/.004 .005/.001

Table 7. Variants of GPO w/ or w/o per-dimension coefficients.

Data Split COCO 5-fold 1K Test [4]
Eval Task IMG→ TEXT TEXT→ IMG

Features Per-dim? R@1 R@5 R@1 R@5

BUTD (Region)
+ BiGRU

3 76.5 95.9 61.2 89.6
7 78.5 96.0 61.7 90.3

BUTD (Region)
+ BERT

3 79.3 96.1 64.7 91.3
7 79.7 96.4 64.8 91.4

Table 8. Variants of GPO w/ or w/o per-dimension coefficients.

Data Split COCO 5-fold 1K Test [4]
Eval Task IMG→ TEXT TEXT→ IMG

Features
Feature to
g(·, ·)? R@1 R@5 R@1 R@5

BUTD (Region)
+ BiGRU

3 78.0 96.2 61.8 90.2
7 78.5 96.0 61.7 90.3

BUTD (Region)
+ BERT

3 79.2 96.3 64.7 91.2
7 79.7 96.4 64.8 91.4

provides no improvements over two combinations of feature
extractors, potentially due to over-fitting.

Would GPO be better if g(·, ·) also takes feature as in-
put? Another possible modification to GPO is to input both
the feature itself and the position index into the coefficient
generator g(·, ·). With this modification, GPO can be consid-
ered as a special form self attention. By intuition, this mod-
ified GPO can adaptively change the pooling coefficients
according to the exact feature values. However, Table 8
shows that this modification does not bring improvements.
Position index along suffices for generating good pooling
coefficients.

In § 3.1 of the main paper, we observe that complex
aggregators cannot outperform well-selected simple pool-
ing function, and the above two experiments again show
that complicated feature aggregation does not necessarily
improve VSE models. A possible explanation for these ex-
perimental results is that: feature extractors have provided
adequate information for multi-modal matching, so the fea-
ture aggregators do not have to further contextualize the
feature vectors. Too complicated models for feature contex-
tualization might increase the risk of over-fitting and hurt

the performance at the end.

References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,

Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-
up and top-down attention for image captioning and visual
question answering. In IEEE Conf. Comput. Vis. Pattern
Recog., 2018. 3, 4

[2] H. Chen, G. Ding, Xudong Liu, Zijia Lin, J. Liu, and J. Han.
Imram: Iterative matching with recurrent attention memory
for cross-modal image-text retrieval. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 12652–12660, 2020. 3, 4

[3] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained
video-text retrieval with hierarchical graph reasoning. In
IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2

[4] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
tam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick.
Microsoft coco captions: Data collection and evaluation
server. arXiv preprint arXiv:1504.00325, 2015. 2, 3, 4,
5

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. In NAACL-HLT, 2019. 3,
4

[6] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
Fidler. Vse++: Improved visual-semantic embeddings. In
BMVC, 2017. 2, 3, 4

[7] Jiuxiang Gu, Jianfei Cai, Shafiq R Joty, Li Niu, and Gang
Wang. Look, imagine and match: Improving textual-visual
cross-modal retrieval with generative models. In IEEE Conf.
Comput. Vis. Pattern Recog., 2018. 3, 4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., 2015. 1, 3, 4

[9] Yan Huang, Qi Wu, Chunfeng Song, and Liang Wang. Learn-
ing semantic concepts and order for image and sentence
matching. In IEEE Conf. Comput. Vis. Pattern Recog., 2018.
3, 4

[10] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik G.
Learned-Miller, and Xinlei Chen. In defense of grid fea-
tures for visual question answering. IEEE Conf. Comput. Vis.
Pattern Recog., 2020. 3

[11] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel.
Unifying visual-semantic embeddings with multimodal neural
language models. NeurIPS Workshop Deep Learning, 2014.
3

[12] Ranjay Krishna, Yuke Zhu, Oliver Groth, J. M. Johnson, Kenji
Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-



Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-
Fei. Visual genome: Connecting language and vision using
crowdsourced dense image annotations. IJCV, 123:32–73,
2016. 3

[13] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xi-
aodong He. Stacked cross attention for image-text matching.
In Eur. Conf. Comput. Vis., 2018. 3, 4

[14] Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun Fu.
Visual semantic reasoning for image-text matching. In Int.
Conf. Comput. Vis., 2019. 3, 4

[15] Dhruv Kumar Mahajan, Ross B. Girshick, Vignesh Ra-
manathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten. Exploring the limits
of weakly supervised pretraining. In Eur. Conf. Comput. Vis.,
2018. 3, 4

[16] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and
Fei-Fei Li. Imagenet large scale visual recognition challenge.
IJCV, 115:211–252, 2014. 3

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst., 2017. 2

[18] Haoran Wang, Ying Zhang, Zhong Ji, Yanwei Pang, and Lin
Ma. Consensus-aware visual-semantic embedding for image-
text matching. Eur. Conf. Comput. Vis., 2020. 1, 3

[19] Jonatas Wehrmann, Mauricio A. Lopes, Douglas M. Souza,
and Rodrigo C. Barros. Language-agnostic visual-semantic
embeddings. In Int. Conf. Comput. Vis., pages 5803–5812,
2019. 3

[20] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. IEEE Conf. Comput. Vis. Pattern Recog.,
2016. 1

[21] Peter Young, Alice Lai, Micah Hodosh, and Julia Hocken-
maier. From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descrip-
tions. TACL, 2:67–78, 2014. 3

[22] Qi Zhang, Zhen Lei, Zhaoxiang Zhang, and S. Li. Context-
aware attention network for image-text retrieval. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3533–3542, 2020.
3, 4

[23] Y. Zhang, Jonathon S. Hare, and A. Prügel-Bennett. Fspool:
Learning set representations with featurewise sort pooling.
Int. Conf. Learn. Represent., 2020. 4


